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Abstract

Inspired by the structural and semantics similarities between Neural Networks and Data-

flow Networks (driven by dataflow program execution models), general AI algorithms with

human-like intelligence can benefit greatly from Dataflow-inspired multi-grained program-

ming and program execution models (PXMs) and architectures. However, most commer-

cially available commodity hardware architectures currently lack crucial capabilities which

would potentially benefit the exploration and experimentation of multi-grained dataflow

execution models. For this reason, programming and runtime systems based on dataflow

models have to emulate the desired architecture and hardware behavior through software,

significantly increasing the overhead in the final application, tainting the validity of evalua-

tions and results cultivated from the aforementioned approaches. We propose an alternative

path to solve this problem based on a software-hardware co-design principle.

The goal of this project is to work towards a hardware-software co-design that explores

the benefits of the dataflow-inspired fine-grain synchronization schemes found within data-

flow PXMs when applied to brain-inspired algorithms and software applications. To this

end, we have developed the underlying computational tools by combining FPGA imple-

mented components used by a dataflow inspired runtime system which works to implement

the Codelet Model[]. We have then applied it to a traditional computer vision and natu-

ral language processing by porting a face landmark estimation algorithm into DARTS[], a

Dataflow-inspired simulation framework implementing Codelet Model targeting x86 (64-bit)

architectures.

DEMAC[] is an extendible, 3D printed platform that is composed of 24 highly-parallel

embedded system boards organized into a Beowulf-cluster. Each node is a commercially

available embedded-system board that consists of a dual-core main processor, programmable

logic system and a multicore accelerator chip with a theoretical capacity of 2 GFLOPS.

The open-source software stack along with the hybrid-architecture of the embedded-system

board provides the flexibility to define custom hardware-software mechanisms which rely on

Dataflow principles.

1 Introduction

Introduction goes here.

2 Background

In this section, we give a brief overview of the basic terminology required for a contextual

understanding of the core principles underlying our project.

2.1 Codelet Model

The Codelet Model [] [] is a hybrid von Neumann/Dataflow Program Execution Model (PXM)

that differs from a sequential computer’s PXM in the following aspects:
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• Instead of a single program counter, there can be multiple program counters, allowing for

concurrent execution of instructions from multiple parts of the program

• Programs are divided into small sequences of instructions in a two-level hierarchy: Threaded

Procedures (TP) and Codelets.

• The order of execution among codelets is determined by data and control dependencies

explicitly identified in the program, as opposed to the program order

• Frames holding local context for functions are allocated from a heap rather than a linear

stack

These features provide the operational semantics, with enough detail, so a programmer can

accurately predict a given program’s behaviour at a given point in the program’s execution. It

provides a basic set of primitive operations, which give specific details of instructions, registers

as well as their interactions to support concurrent execution of Codelets.

2.1.1 Codelets

Based on Semi-Dynamic Dataflow principles, a Codelet is the combination of instructions,

data dependencies and the definition of operational conditions. This definition allows for the

reduction and the amortization of the synchronization overhead while also improving data lo-

cality. Codelets can be executed when all data dependencies have been met and there are

enough computational resources available. The Codelet Model maintains the ordering con-

straints among instructions within one codelet, but loosens the constraints between different

codelets. A Codelet is a sequential, non-preemptive, atomically-scheduled set of instructions.

Representing a program as multiple sections of code allows the execution of instructions as soon

as the data and resources are available.

• Sequentially Executed: Modern processors perform sequential execution very effi-

ciently, even when there are many dependencies among the instructions and can take

advantage of the data locality which is usually present due to these dependencies. Lever-

aging instruction level parallelism (ILP) and the control mechanisms present in this kind

of hardware provides desirable levels of performance without the need for additional,

specialized hardware

• Non-Preemptive: Once a Codelet begins execution, it remains active in the CPU until

it is finished executing.

• Atomic Scheduling: A codelet cannot be interrupted, therefore it should not begin

execution until it is guaranteed to finish without interference from other processes
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2.1.2 Threaded Procedure (TP)

A TP consists of one or more Codelets. In the Codelet Model, a Codelet is always a part of

an enclosing TP. All codelets in a procedure share the local variables and input parameters of

that TP, much like context in modern programming languages. Objects may have a lifetime

beyond a single procedure, may have a size which can’t be determined at the time the frame

is allocated, or may be shared among multiple procedures. Some objects may even need to

exist outside of a particular frame’s context. The tight coupling between codelets within these

categories requires a fine-grain level of synchronization and data sharing mechanisms.

TPs and Codelets differ in their contexts, their lifetimes and their manner of invocation.

The context of an instance of a TP is similar to the context of a function call in a conventional

language such as C. Codelets have much smaller context, consisting only of registers and spe-

cialized state variables (SyncSlots). On the other hand, a TP instance remains “live” even if

none of its Codelets are active or enabled; a TP must also explicitly terminate itself. TPs are

invoked explicitly by the application program.

When the program invokes a TP, the machine creates a context for this procedure, ini-

tializing the input parameters with the values passed to this TP. A new frame is allocated in

memory for this particular instance of the procedure. All codelets can access this frame through

a unique frame identifier (FID), which is part of the invoking Codelet’s context and is normally

kept in a register for quick access. This is similar to the frame pointer found in conventional

block-structured languages. Given the FID, it is possible to access any local variable or input

parameter within the corresponding TP’s instance context. This also allows the use of recursive

calls. Because procedures are explicitly terminated, no garbage collection of frames is needed.

2.1.3 Sync Slots

A codelet needs to be sure that all dependencies have been satisfied before it is enabled, since the

Codelet can’t be preempted once started. A counter is used to count the incoming signals so it

is known when a Codelet is ready to be enabled. The Codelet model allows for the instantiation

of SyncSlots to control different Codelets simultaneously along with allowing several counters

to control the same Codelet.

A SyncSlot contains:

• SyncCount (SC): Indicates the number of dependencies to be received by the SyncSlot

before the specified Codelet can be enabled.

• ResetCount (RC): If the SyncCount reaches 0 the Codelet specified by the SyncPointer

is enabled. After the Codelet execution starts, the SC is set back to the RC.

• SyncPointer (SP): Binds the SyncSlot to one of the Codelets in the TP.

The SyncSlot counts the number of tokens received. Sending a SyncSignal is sufficient if and

only if both sender and receiver are in the same TP instance. This is because local variables
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can be used to transfer the data from one Codelet to another. Because the SyncSlots are used

for controlling the enabling of Codelets, they must persist beyond the lifetime of a Codelet, and

therefore must be part of the context of a TP. The use of a RC allows Codelets to be enabled

multiple times.

Each Codelet is part of an enclosing TP, a given instance of a Codelet is associated with one

particular procedure instance. Each Codelet is given a unique Codelet identifier (CID). Each

instance of a codelet can be uniquely identified by a pair (FID, CID).

2.1.4 Codelet Abstract Machine

What this model has in common with other parallel paradigms is the division of a program into

multiple sections of code, defined as Codelets. Combining individual instructions into Codelets

reduces and amortizes the overheads of synchronization and improve data locality. A Codelet

that is not ready to begin execution is classified as dormant. When the system decides a codelet

is ready to execute, it enables the Codelet. Since the CPU may still be busy with other codelets

at that time, there may be a delay between the time a codelet is enabled and the time it starts

running. We refer to the first state as enabled while the latter state is considered active.

Figure 2 shows an abstract model of a machine for executing Codelets. There are two

pools of Codelets: one for dormant Codelets and the other one for enabled codelets. When

Codelets are enabled, they are moved from the dormant pool to the enabled pool. When the

Active Codelet Processor has available resources for executing the Codelet, it takes one from

the enabled pool, making it active. At the same time, it must allocate the required resources

needed by this Codelet and begins execution.

A two-layer hierarchy of Codelets and TPs adds flexibility, programmability and support

for current off-the-shelf processors. When a procedure is invoked, the system must first allocate

and initialize the frame. Once this stage is completed, the initial Codelet is enabled, and begins

waiting for the machine to have sufficient resources available for execution. All other Codelets

in the procedure must rely on other mechanisms to become enabled.

The machine must check and verify dynamically that all data and control dependencies

have been satisfied before enabling a Codelet. Using Synchronization Signals (SyncSig) and

Synchronization Slots (SyncSlots). A synchronization signal, or SyncSig, is sent from one

Codelet to another, either in the same or another procedural instance, to alert the recipient

that a specific control or data dependency has been satisfied.

2.1.5 Memory Model

Most large multiprocessors use either distributed memory or distributed shared memory. Dis-

tributed memory architectures have separate memories for each processor or group of processors.

These are separate both physically and logically. A process can access data in remote memory

only indirectly, by communicating with a process that has access to that memory (often referred
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as message passing machines). Distributed shared memory architectures have a global address

space, which allows any processor to access any memory location in the system. The Codelet

PXM is neither restricted to distributed memory machines nor limited by them.

To support the Codelet PXM, a machine’s memory system must have the following prop-

erties:

• An active Codelet must have direct, low-latency access (through load and store operations)

both to its private Codelet context and to the frame it shares with other Codelets in the

same procedural instance

• An active sequential function call must have direct, low-latency access both to its local

linear stack and to the frame belonging to the Codelet which initiated the sequential

function call (either directly or through other function calls)

• Instruction pointers are uniform through the system. The code for all threaded procedures

and sequential functions is accessible from all processing elements of the machine, and

given SP value has the same meaning on all such elements. The instruction addresses

used in sequential function calls must be the same on all processing elements.

• All objects in the system which may be accessible by more than one TP. This includes

FID, SyncSlots or any data addresses which may be bound with SyncSignals; though they

must be globally unique and accessible by special Codelet Model operations.

Since all Codelets within a TP share data in a single frame, all Codelets in a given TP must

run on a processor or processors with access to the same context. The first three requirements

ensure rapid execution within a Codelet and guarantees that procedures and sequential functions

can be invoked on any processing element. This allows for Codelets to communicate seamlessly

with other procedures. Each processor must be able to determine the exact location of any

given memory reference.

2.1.6 Communication Mechanisms

Each element (TP, Codelet, SyncSlot) and each instance of those in the PXM is referenced

by a unique identifier. Memory references, at least those passed between procedures, must be

globally unique across the machine, and each processor must be able to determine the exact

location of any given memory reference. The Codelet Model Defines atomic operations for

sending data and a SyncSignal together. This Data-Transfer/SyncSignal operation may be

initiated by the producer of the data, which sends local data to another location, or by the

consumer, which sends a request for remote data to the system. The latter operation is called

a split-phase transaction because the request and data transfer may occur in distinct phases.
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2.1.7 Operations

The execution of a Codelet-based program relies on various operations for sequencing and

manipulating the Codelets in this PXM. These operations perform the following functions:

• Invocation and termination of TPs and Codelets

• Creation and manipulation of SyncSlots

• Sending of SyncSignals to SyncSlots, either alone or atomically bound with data.

2.2 The Embedded System

The embedded system board used is an affordable, highly parallel and open source embedded

system. The board features a programmable logic/main processor combined chip, a multi-core

accelerator, and some peripherals. The accelerator operates on a RISC architecture and is used

to offload computation for acceleration. It is the accelerator, together with its low cost and

the openness of its software stack, that makes the embedded system unique and a great fit for

our purpose. The board runs full-fledged Ubuntu 15.04, modified to contain the drivers that

communicate with the accelerator through some programmable logic running on the FPGA.

Each of the cores of the accelerator has 32 KB of scratchpad memory that can be accessed

by other cores. There is no coherency protocol, the memory model is relaxed and there are

a couple of instructions that allow atomic access. The user is responsible for managing this

memory and use it for code and data. For programming the system it is possible to use C, some

limited functionalities of C++, and assembly. However, all of the software stack (i.e. operating

system, drivers, libraries, and FPGA code) is fully open source.

Thanks to these properties, the system is highly flexible and customizable, while its bare-

bones design allows us to remove some of the burden present in current microprocessors (e.g.

cache coherency protocols) that have shown to be detrimental to the performance of the Codelet

Model implementations. However, it also makes the realization of this project more challenging.

2.3 Programming Models

2.3.1 MPI

A standard Message Passing Interface for distributed memory concurrent computers and net-

works of workstations. Provides the communication and synchronization mechanisms to share

control and data among the different nodes through the network. The main advantages of using

MPI are the portability, ease-of-use and a clearly defined set of routines.
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2.3.2 OpenMP

Open Multi-Processing, is an application programming interface (API) that supports multi-

platform shared memory multiprocessing programming in C, C++ and Fortran. It consists of

a set of compiler directives, library routines and environment variables that influence run-time

behavior. It is used for communication and synchronization between the main processor cores

in a single node.

2.4 Machine Learning

2.4.1 Protocol Buffers

Protocol buffers (or protobuffers) offer the programmer an intuitive interface to serialize struc-

tured data across different languages and platforms in an intuitive, extensible fashion. The

programmer will input how they wish for their messages to be formatted, much like XML.

Google Protobuffers highlight they are ”smaller, faster and simpler” than their XML equiva-

lents [10,11,12]. In comparison to XML formatting, protocol buffers offer a solution that can

be 3-10x smaller, resulting in a performance improvement of 20-100x times when parsing or de-

serializing. Additionally, the syntax of protocol buffers is less ambiguous than its counterpart

XML files. As an example, figures 4 and 5 are both representation of a class Person with fields

name, and email in protocol buffers and XML respectively.

A second advantage of Protocol Buffers is that it is meant to create interfaces that natively

map into different programming languages. Therefore, the same protobuffer description file

can be used to generate native libraries in C, C++, Java, Go language and others. Therefore

improving programmability, usability and performance. All of this configuration is carried

out in the .proto file for the project. Within this one file, multiple languages are easily and

comprehensively generate applicable source code.

Protobuffer for Neural Networks.

Protocol buffers are a general method to describe any sort of information. The programmer

must first specify how they want their data interpreted in terms of messages. However, Google

has used protocol buffers for their Tensorflow runtime in order to describe neural networks that

are to be executed in the underlying Tensorflow runtime. The magic resides in that protocol

buffers support C/C++/Objective-C, Python, Go, Ruby and C. Therefore, it is possible to

create front ends in these programming languages that will generate neural networks represented

using the graph definitions that can be interpreted by the runtime located in the back end. In

the meantime, the back end will implement each of the operations needed for the execution of

the neural networks.

Tensorflow’s neural networks definitions include the concept of Graph as a collection of

nodes. Each node has at least: a list of predecessor nodes, an operation type, and a set of

attributes containing additional information of the network. It is possible to store untrained

neural networks that contain no particular weights or values representing just the structure of
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the network. Additionally, it is possible to store so-called “frozen” neural networks that are

fully trained model ready to be used for execution.

2.4.2 Facial Landmark Detection Algorithm

Face detection is a problem in computer vision for locating and localizing one or more faces in a

photograph. Locating a face in a photograph refers to finding the coordinates of the face in the

image, whereas localization refers to demarcating the extent of the face, often via a bounding

box around the face. Detecting faces in a photograph is easily solved by humans, although has

historically been challenging for computers given the dynamic nature of faces.

For facial landmark detection, we have selected the Multi-task Convolutional Neural Net-

work (MTCNN) algorithm [4] developed by Kaipeng Zhang et al. We chose this algorithm as

the neural network is large enough and fast enough exploit advantages of the dataflow based

execution model. The MTCNN model consists of 3 separate networks: the P-Net, the R-Net,

and the O-Net. Figure 6 briefly shows the architecture of entire neural network.

In the P-Net, for each scaled image, a 12x12 kernel runs through the image, searching for

a face. Within each of these 12x12 kernels, 3 convolutions are run through with 3x3 kernels.

After every convolution layer, a prelu layer is implemented. In addition, a maxpool layer is

put in after the first prelu layer. After the third convolution layer, the network splits into two

layers. The activations from the third layer are passed to two separate convolution layers, and

a softmax layer after one of those convolution layers. One of the convolution layers outputs

the probability of a face being in each bounding box, while the other convolution outputs the

coordinates of the bounding boxes.

R-Net has a similar structure, but with even more layers. It takes the P-Net bounding boxes

as its inputs, and refines its coordinates. he end, giving out two outputs: the coordinates of the

new bounding boxes and the machine’s confidence in each bounding box. Finally, O-Net takes

the R-Net bounding boxes as inputs and marks down the coordinates of facial landmarks.

2.5 Dataflow inspired Neural Network chips

Deep learning has emerged as one of the most important computational workloads in recent

years. To meet its growing computations demands, we have seen a rise in the development of

dataflow inspired chips specialized for processing neural networks.

Cerebras[] is one of the projects where its cores are designed specifically for the sparse linear

algebra of neural networks. To take advantage of this sparsity, the core has built-in, fine-grained

dataflow scheduling, so that the compute is triggered by the data. We should also note the

importance of software stack and Program Execution Model (PXM) highlighted by this project.

The Cerebras software stack provides a seamless interface to existing high-level ML frameworks,

such as TensorFlow[] and PyTorch[]. The graph compiler begins by extracting a dataflow graph

representation of the neural network from the user-provided framework representation.
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The Tianjic chip[] adopts a many-core architecture, reconfigurable building blocks and a

streamlined dataflow with hybrid coding schemes, and can not only accommodate computer-

science-based machine-learning algorithms, but also easily implement brain-inspired circuits

and several coding schemes. By forming a parallel on-chip memory hierarchy and organizing

the dataflow in a streaming fashion, the Tianjic chip can provide improved throughput and

power efficiency.

3 Innovation

The long term objective of this project is to create a distributed embedded systems platform that

allows execution of neural networks using the Codelet Program Execution Model. The system

takes a neural network defined in terms of Google’s protocol buffer description files similar to

those used by Tensorflow. However, instead of using the Tensorflow runtime, these files are

translated into an extended Codelet Model’s API that implements the operations needed by

these neural networks. To this end the contributions of this project are:

• Creation of a transpiler that takes frozen neural network models described in Protocol

Buffer format and produces a version of this neural network into the Codelet Model’s

API.

• Design and implementation of a beowulf cluster on a 3D printed, stackable, and expand-

able frame

• Extension of the already existing DARTS (i.e. an implementation of the Codelet Model)

to run on distributed mode and in the embedded system, and its accelerator (coprocessor)

• Using an already existing implementation of the Facial Landmark Detection algorithm

for comparison against Tensorflow when running on the main processor architecture

While progress has been made in each of the elements of Figure 7, we are still working

towards connecting these elements together towards a holistic solution. This document mainly

reflects the solution and design of our system. However, our team is still working towards

delivering tangible results in our final presentation.

3.1 The importance of Program Execution Models (PXM)

A program execution model provides a common ground between the programmer and the way

a program is executed in a specific architecture. It defines a level of abstraction that allows the

user (compiler or programmer) to correctly map computational tasks in a given hardware.
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3.1.1 Using dataflow for brain inspired applications

Artificial neural networks (ANN) are computing systems that are inspired by, but not identical

to, biological neural networks that constitute animal brains. ANN consists of neurons, connec-

tions and hierarchical architectures inspired by neuron systems found in human brains. The

resemblance of the structure of Neural network algorithms to the way dataflow programs are

described allows exploiting the way tasks are distributed. In principle, dataflow programming

models execute operations as soon as the data and resources are available, freeing the program

from a sequential execution order. This dynamic nature of dataflow makes the ideal execution

model to execute neural networks as it avoids the need to explicitly and statically map these

graphs on the modern mesh chips.

3.1.2 The DEMAC cluster

The Delaware Modular Assembly Cluster (DEMAC) is an array of embedded systems that

combines the many-core accelerator chip and the embedded FPGA with the flexibility of a

complete open source stack. The mount is house made 3D-printed frames allowing low cost

implementation and scalability. It is designed to fit 4Us of a standard size rack. The multiple

nodes allows us to explore a distributed version of the Codelet Model where there is no notion

of shared memory among nodes and the execution of tasks in the multicore-shared-memory

embedded system chips. Current implementation allows us to use OpenMP and MPI on the

cluster.

The communication between nodes is established using an ethernet switch. A Network File

System (NFS) based on sshfs allows all the nodes to access the same executable program.

3.1.3 Construction and assembly

The current version of DEMAC holds 24 embedded systems, each of these is mounted in a

Board Tray (BoT) that is labeled with the name of the node (NOPA). A Board Casing (BoC)

provides housing for 4 boards, a total of 6 of these frames is used, and they allow the connection

of 2 independent Fan Casings (FaC) and 1 Power Casing (PwC). The FaC includes an air input

and output that enables for the air to flow and separately cool down a single BoC. The PwC

holds a USB hub that provides enough energy to the boards.

The cluster is mounted on top of a switch that provides an ethernet connection between

the nodes and the HeadNode. Each board is connected using RJ-45 cables to the switch. The

HeadNode allows the interfacing of the users with the other nodes. The power for the boards

is independent from the auxiliary systems (Cooling and Network).
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3.1.4 eDARTS

One of the major limitations that the accelerator chip is its limited support for C++ features.

In addition to this, its memory is flexible, but requires the user or runtime to manage it.

Previous implementations of DARTS provided an API that heavily borrowed from inheritance

in C++ classes. However, because of its unique architecture it is necessary to recreate the

fundamental instruments in DARTS specifically for the accelerator. As a result, we have created

eDARTS, a C implementation of DARTS specifically catered to the accelerator chip and its

memory architecture. Several various assets have been created to bridge the gap between the

architectures including, but not limited to:

• Queues: Manages codelets as well as threaded-procedures

• Mutex: Ensure resources are only accessed and modified by one process at a time to

maintain data integrity

• Barrier: Used to confirm each active process has reached a certain end-point within the

program’s execution

• Malloc: Allows for the management of the scratchpad memory on-board each core of

the accelerator (ie. local memory, distributed-local memory, and off-chip: global memory

stored in the DRAM)

• Computational Unit: Used for designating a given core to be a core for carrying out

computation

• Scheduling Unit: Iterates through list of codelets, waiting for event signals. For every

event signal, it decrements the respective codelet’s dependency counter. Once an iterated

node has a dependency count of zero, it facilitates the execution then repeats the process

until the end of the program

3.1.5 Distributed Execution Codelet Accelerated Runtime for Dataflow (DECARD)

Based on the Codelet PXM, DECARD allows the task scheduling and communication of a

multi-node system. The current implementation in DEMAC features two elements with the

following functions:

• Node Manager: Running in one of the main processor cores, it interfaces with the accel-

erator. A TP Queue that act as a FIFO buffer, holds the Threaded Procedures generated

by eDARTS that should be executed in other nodes and incoming TPs from other nodes.

• Node Communicator: It is in charge of the communications between nodes (TPs, Sync-

Slots and Data) and allocating them in local memory.
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The Node Manager relies on OpenMP to share information with the Node Communicator,

and make use of the libraries provided by adapteva to manage and schedule tasks to the accel-

erator. The Node Communicator uses MPI functions to send and receive information to/from

other nodes in the system.

4 Solution Methodology

4.1 Challenge Description

Machine learning algorithms build a mathematical models based on sample data, often relying

on statistical models and heuristics that computer systems use to perform a specific task without

using explicit instructions. The main objective is to generalize from experience the ability of a

learning machine to perform accurately on new, unseen examples/tasks after having experienced

a learning data set. The learner has to build a general model that enables it to produce

sufficiently accurate predictions in new cases.

An Artificial Neural Network is an interconnected group of nodes, called neurons. Each

connection can transmit information or signals from one artificial neuron to another, which

neurons can process and signal additional neurons connected to it. These models usually require

large magnitudes of data and computational power to fit the parameters in most of the neurons.

Training is often perform in powerful multi-core computers that can iterate through the training

dataset and generate a lighter model. Such a model can be used for posterior inference in less

powerful machines.

• Commercially available General-Purpose GPU (GPGPU) allow the use of powerful multi-

node architectures in desktop computers and clusters; this enables extensible development

and implementation of highly parallel algorithms involving various disciplines. Neverthe-

less, this hardware is based on SIMD (Single Instruction Multiple Data), limiting the

flexibility and scalability for complex non-uniform problems.

• The accelerator provides a multi-core MIMD (Multiple instructions Multiple Data) ar-

chitecture, enabling increased levels of flexibility, scalability and programmability. This

allows for programmers to implement novel runtime adaptations.

• The lack of a hardware-enforced Memory Model (MM) in the accelerator chip permits

the implementation of a strong but consistent MM based on dataflow principles. Data

coherence is enforced by the underlying mechanisms of the Codelet Model.

• DARTS is a software implementation of the Codelet Model, designed to emulate core

Dataflow principles within a single-node-multicore architecture.

• Porting DARTS to the accelerator takes advantage of the multicore architecture and the

lack of an enforced memory model to test the efficacy of a dataflow-inspired implementa-

tion with the intent to increase parallelism.
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• To extend the Codelet Model beyond a single node, a distributed implementation is

required. Using the same principles described by the Codelet PXM, we developed DE-

CARD, a software based runtime that enacts simple Dataflow mechanisms.

• Converting Protobuffer files to the Codelet Model allows for a comprehensive approach

to mapping previously defined Neural Networks to Dataflow-compatible architectures.

4.2 Solution

Using off-the-shelf hardware to emulate a dataflow machine, as described above, allows the

implementation and viability testing of Dataflow-inspired PXM. This method of prototyping

enables developers to analyze the efficacy of such a machine while alleviating the burden of

manufacturing specialized hardware.

4.2.1 Codelets as neurons

Given the data-driven and event-driven nature of data-flow inspired execution models, it is

possible to raise similarities between Codelets and Neural Networks. Three characteristics that

are directly comparable are as follows. First, the execution of both Codelets and Neurons only

depend on their inputs. There are no side effects on the execution of a Codelet other than its

outputs. Second, the activation function of a neuron is comparable with the operation that

is described inside a Codelet. Third, the Direct Acyclic Graph formed by a codelet graph is

flexible enough to be able to represent a neural network without requiring any modification.

However, there are other aspects that need extra consideration. Information in a neural net-

work is stored in a distributed way. In the codelet model, this distribution could be achieved

by using Threaded Procedures, which stores the tokens and necessary context for the execu-

tion of Codelets. Additionally, weights connecting neural networks have no direct mapping to

Codelets. However, it is possible to either include the weight as part of the Codelet’s opera-

tion, or extend the concept of Synchronization Slot to account for weights. Furthermore, some

Neural Networks might require saving execution state from previous executions (e.g. Recurrent

Neural Networks). For these cases it is possible to use Threaded Procedure’s storage as storage

containing a “Global” state of the program. If information needs to be shared across multiple

threaded procedures, it is possible to use the hierarchy formed by threaded procedures to share

state across larger groups of neurons (or layers).

Nevertheless, while the structure of both are similar, it is the mapping of the execution of

Codelets to the machine that makes the difference. Neural networks describe the operations

and their connections of a particular problem. However, Codelets, in addition to describing

the computation, provide a well defined execution model that maps this computation into a

parallel system based on a given abstracted machine.
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4.2.2 Protocol Buffers to DARTS

In the background section regarding Protocol Buffers, various languages are highlighted which

can utilize the efficiency of protobuffer files. For any C-Family language, the protoc compiler can

be used to generate applicable source files which can be used by neural-network (NN) runtimes

(mainly Tensorflow). Though useful, our project aims to eliminate other NN runtimes and

instead use an implementation of the Codelet Model [7] [8], a derivative of dataflow; namely, we

are targeting translation from a protobuffer binary file to DARTS (Delaware Abstract Runtime

System). This requires taking in an NN defined by a pb binary file and porting the data so

that it is separated into a combination of codelets and thread-procedures. Using the header

files already present within the DARTS library allows for easy templating of a transpiler for

converting from protobuffer to DARTS.

DARTS utilizes two main concepts when implementing a dataflow-inspired execution model:

• Threaded Procedure

– Reset Codelet Dependencies

– Decrement Codelet Dependencies

• Codelet

– Status (Enabled, Dormant, Executing)

– Sync Slot (Dependency Counter)

– Fire Function (When all necessary dependencies are satisfied, execute Codelet)

– TP (Threaded Procedure which houses this codelet)

Python’s Tensorflow library allows for easy parsing of information within a protobuffer

binary file. The programmer is able to see a comprehensive list of all nodes in the network, their

inputs, attributes, etc. For the sake of porting to the DARTS runtime, the programmer has all

necessary information for generating a codelet, aside from a TP and the output destinations of

a given node. The lack of specific TPs is remedied by the programmer having an understanding

of the NN algorithm used to achieve the desired result. For example, the facial recognition

algorithm, MTCNN, utilizes three different networks (Pnet, Rnet, and Onet). It is natural to

divide work into three TPs, though the transpiler can be easily extended to perform a more

in-depth analysis which can design the most efficient separation of codelets into TPs to achieve

maximum parallelism. The issue of forward dependencies is addressed through a network-wide

cross-reference of a node’s name with all other nodes’ dependencies. This ensures a previous

node within the graph knows where to send its output signal to the decrement the preceding

node’s dependency counter.

4.2.3 DECARD running on DEMAC

DECARD is the adaptation of the Codelet Abstract Machine for the DEMAC cluster. In the

innovation section above, the hardware-software codesign is described, as well as the underlying
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mechanisms which enforce compliance with the Codelet PXM. A set of predefined functions and

routines coordinates the successful execution of parallel programs mapped using the primitives

provided.

4.3 Results

Running the implemented functions on DEMAC allowed us to test the correct execution of the

previously described algorithms. Our long term goal is to test the viability of Dataflow-based

machines. At this point we have achieved several independent advances among the different

layers. We have been able to:

• Successfully run eDARTS on the accelerator chip, setting up different configurations of

Scheduling Units and Computational Units as well as the execution of operations required

for a NN algorithm such as Matrix Multiplication, Convolution, Relu, Vector addition,

among others.

• Successfully modify the FPGA bitstream to support hardware implementations native to

the Codelet Abstract Machine like TPQueues and SyncSlots. Now moving forward to

implement Scheduling and Communication modules.

• Successfully run DECARD to establish multi node communication across the cluster,

enforcing Dataflow principles and natives, scheduling tasks and keeping track of the tasks

spawned from node to node as well as data dependencies.

• Successfully analyzing protobuffers to automatically extract the information required to

map NN to the Codelet Model, converting protobuffers messages to corresponding TPs,

Codelets and SyncSlots.

• Successfully run an implementation of the face detection algorithm required to extract

the information required for the face identification algorithm.

5 Conclusion

Our groups progress thus far shows promising results for complex computation involving oper-

ations such as convolutions along with other simultaneous simple arithmetic operations which

could benefit greatly from a multi-core accelerator. Though lacking in the ability to carry

out complex operations on a hardware level when compared to modern, serial hardware, many

brain-inspired applications rely solely on countless simplistic operations which can be easily

handled by even the most elementary hardware. This fact is what motivates our group to

pursue alternate routes for accomplishing the goals of complex neural networks. Utilizing our

transpiler we are able to convert any protobuffer file to the C++ language, enabling the use of

alternate hardware (ie. the accelerator architecture) to provide another, more efficient execution

of a given program. The performance gain associated with parallelizing remedial computation,
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especially when applied to matrix operations, will supercede the performance of modern serial

processors.

There are many approaches to distributing the computation; these can consist of handling

threaded-procedures solely in the main processor while sending codelets through the accelerator;

sending threaded-procedures to a given core; or perhaps setting half of the sixteen-cores to be

scheduling units and the other to be computational units, assigning one main processor core

to be the scheduling unit which distributes the computation to the communication core. It

can then delegate computation across the cluster. This would enable what is perhaps the most

integrated and efficient way of handling any parallel computation.

6 Outlook

6.1 Technical Outlook

When designing any program or hardware model for parallel computing, the three main ana-

lytical approaches a developer can target when creating something new: scalability, portability,

and programmability. Our group seeks to address all three of these key characteristics. Our im-

plementation uses OpenMPI, allowing for an extensible interface which can utilize any amount

of nodes to distribute computation across. Aside from scalability, our proposed model is also

extremely portable. Because of the protobuffer file, our model can be easily extended to the

most common programming languages including Java, the entirety of the C-family, along with

others such as C for Windows, Python, and Ruby. To this end, almost any experienced pro-

grammer will be able to utilize the Codelet Model and all of its theoretical and implementation

benefits.

6.2 Application Outlook

Our future work will integrate our current progress with our theories on the Codelet Model.

We will create a transpiler which is universal to any protobuffer file which can port to C++

in such a way that is easy for future parallel hardware to carry out. This includes, but is not

limited to, coprocessors such as GPUs, dataflow-inspired chips, as well as any future chips with

a distributed-memory model. The need for a consistent and reliable program-execution model is

growing as more and more companies begin to explore the development of parallel architectures

and the Codelet model is one of the most promising avenues. Our project will prove the efficacy

of such a model, showing even on serial hardware, similar, if not better performance can be

achieved when utilizing a simple parallel architecture such as the multi-core accelerator chip.

7 Team Introduction

The team consists of three members mentored by a senior graduate student.
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